Selected Solutionsfor Chapter 4.
Divide-and-Conquer

Solution to Exercise 4.2-4

If you can multiply3 x 3 matrices using multiplications, then you can multiply
n x n matrices by recursively multiplying /3 x n/3 matrices, in timel' (n) =
kT(n/3) + O(n?).

Using the master method to solve this recurrence, conskuerdtio of7'9*

andn?:

* Iflog; k = 2, case 2 applies anfi(n) = @(n?Ign). In this casek = 9 and
T(n) = o(n'97).

* Iflog;k < 2, case 3 applies anfi(n) = ©(n?). In this casek < 9 and
T(n) = o(n'97).

« Iflog;k > 2, case 1 applies anfi(n) = ©(n'°%*). In this casek > 9.
T(n) = o(n'97) when log k < Ig7, i.e., whenk < 397 ~ 21.85. The largest
such integek is 21.

Thus,k = 21 and the running time i®(n'°%%) = ®(1n'°%2') = 0(n?*°) (since

log, 21 =~ 2.77).

Solution to Exercise 4.4-6

The shortest path from the root to a leaf in the recursionisee— (1/3)n —
(1/3)>n — --- — 1. Since(1/3)*n = 1 whenk = log, n, the height of the part
of the tree in which every node has two children is,lagSince the values at each
of these levels of the tree add upde, the solution to the recurrence is at least
cnlogyn = Q(nlgn).

Solution to Exercise 4.4-9

T(n)=T(n)+T(1—a)n)+cn
We saw the solution to the recurreriEér) = T (n/3) + T (2n/3) 4+ cn in the text.
This recurrence can be similarly solved.
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Without loss of generality, let > 1—a, sotha) < 1—a < 1/2andl/2 <a < 1.
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Total: O(nlgn)

The recursion tree is full for log,, _,, » levels, each contributing:, so we guess
Q(nlog,,_qn) = Qnlgn). It has log,, n levels, each contributing: cn, so
we gues(nlog,,, n) = O(nlgn).
Now we show tha’(n) = ®(nlgn) by substitution. To prove the upper bound,
we need to show thdt(n) < dnlgn for a suitable constant > 0.
T(n) = T(an)+T((1—a)n)+cn
danlg(an) +d(1 —a)nlg((l1 —a)n) + cn

= danlga +danlgn +d(1 —a)nlg(l —a) +d(1 —a)nlgn +cn

= dnlgn+dn(alga + (1 —a)lg(l —a)) +cn

< dnlgn,
if dn(elga + (1 —a)lg(l —®)) + cn < 0. This condition is equivalent to

IA

dlalga + (1 —a)lg(l —a)) < —c.

Sincel/2 <a <land0 < 1—a < 1/2,we havethatlg < 0andIgl—a«) < 0.
Thus,alga + (1 — o) lg(1 — ) < 0, so that when we multiply both sides of the
inequality by this factor, we need to reverse the inequality
—C
>
Toalgae+ (1 —a)lg(l —a)
or

C
>
T —alga+-(1-a)lgl —a)
The fraction on the right-hand side is a positive constamd, so it suffices to pick
any value ofd that is greater than or equal to this fraction.

To prove the lower bound, we need to show tifid) > dnlgn for a suitable
constantd > 0. We can use the same proof as for the upper bound, subgiitutin
for <, and we get the requirement that

Cc
—alga— (1 —a)lg(l —a)
Therefore,I'(n) = ©(nlgn).

0<d<




