Selected Solutions for Chapter 4:
 Divide-and-Conquer

Solution to Exercise 4.2-4

If you can multiply 3×3 matrices using k multiplications, then you can multiply $n \times n$ matrices by recursively multiplying $n / 3 \times n / 3$ matrices, in time $T(n)=$ $k T(n / 3)+\Theta\left(n^{2}\right)$.
Using the master method to solve this recurrence, consider the ratio of $n^{\log _{3} k}$ and n^{2} :

- If $\log _{3} k=2$, case 2 applies and $T(n)=\Theta\left(n^{2} \lg n\right)$. In this case, $k=9$ and $T(n)=o\left(n^{\lg 7}\right)$.
- If $\log _{3} k<2$, case 3 applies and $T(n)=\Theta\left(n^{2}\right)$. In this case, $k<9$ and $T(n)=o\left(n^{\lg 7}\right)$.
- If $\log _{3} k>2$, case 1 applies and $T(n)=\Theta\left(n^{\log _{3} k}\right)$. In this case, $k>9$. $T(n)=o\left(n^{\lg 7}\right)$ when $\log _{3} k<\lg 7$, i.e., when $k<3^{\lg 7} \approx 21.85$. The largest such integer k is 21 .
Thus, $k=21$ and the running time is $\Theta\left(n^{\log _{3} k}\right)=\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.80}\right)$ (since $\log _{3} 21 \approx 2.77$).

Solution to Exercise 4.4-6

The shortest path from the root to a leaf in the recursion tree is $n \rightarrow(1 / 3) n \rightarrow$ $(1 / 3)^{2} n \rightarrow \cdots \rightarrow 1$. Since $(1 / 3)^{k} n=1$ when $k=\log _{3} n$, the height of the part of the tree in which every node has two children is $\log _{3} n$. Since the values at each of these levels of the tree add up to $c n$, the solution to the recurrence is at least $c n \log _{3} n=\Omega(n \lg n)$.

Solution to Exercise 4.4-9

$$
T(n)=T(\alpha n)+T((1-\alpha) n)+c n
$$

We saw the solution to the recurrence $T(n)=T(n / 3)+T(2 n / 3)+c n$ in the text. This recurrence can be similarly solved.

Without loss of generality, let $\alpha \geq 1-\alpha$, so that $0<1-\alpha \leq 1 / 2$ and $1 / 2 \leq \alpha<1$.

The recursion tree is full for $\log _{1 /(1-\alpha)} n$ levels, each contributing $c n$, so we guess $\Omega\left(n \log _{1 /(1-\alpha)} n\right)=\Omega(n \lg n)$. It has $\log _{1 / \alpha} n$ levels, each contributing $\leq c n$, so we guess $O\left(n \log _{1 / \alpha} n\right)=O(n \lg n)$.
Now we show that $T(n)=\Theta(n \lg n)$ by substitution. To prove the upper bound, we need to show that $T(n) \leq d n \lg n$ for a suitable constant $d>0$.

$$
\begin{aligned}
T(n) & =T(\alpha n)+T((1-\alpha) n)+c n \\
& \leq d \alpha n \lg (\alpha n)+d(1-\alpha) n \lg ((1-\alpha) n)+c n \\
& =d \alpha n \lg \alpha+d \alpha n \lg n+d(1-\alpha) n \lg (1-\alpha)+d(1-\alpha) n \lg n+c n \\
& =d n \lg n+d n(\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha))+c n \\
& \leq d n \lg n,
\end{aligned}
$$

if $d n(\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha))+c n \leq 0$. This condition is equivalent to
$d(\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha)) \leq-c$.
Since $1 / 2 \leq \alpha<1$ and $0<1-\alpha \leq 1 / 2$, we have that $\lg \alpha<0$ and $\lg (1-\alpha)<0$. Thus, $\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha)<0$, so that when we multiply both sides of the inequality by this factor, we need to reverse the inequality:
$d \geq \frac{-c}{\alpha \lg \alpha+(1-\alpha) \lg (1-\alpha)}$
or
$d \geq \frac{c}{-\alpha \lg \alpha+-(1-\alpha) \lg (1-\alpha)}$.
The fraction on the right-hand side is a positive constant, and so it suffices to pick any value of d that is greater than or equal to this fraction.
To prove the lower bound, we need to show that $T(n) \geq d n \lg n$ for a suitable constant $d>0$. We can use the same proof as for the upper bound, substituting \geq for \leq, and we get the requirement that

$$
0<d \leq \frac{c}{-\alpha \lg \alpha-(1-\alpha) \lg (1-\alpha)} .
$$

Therefore, $T(n)=\Theta(n \lg n)$.

